ORGANIC LETTERS 2003 Vol. 5, No. 18 ³²⁷⁷-**³²⁸⁰**

Biradicals/Zwitterions from Enallene-Isonitriles. Formal [4 + **1] Cycloadditions Leading to 11***H***-Indeno[1,2-***b***]quinoline and Related Compounds**

Xiaoling Lu, Jeffrey L. Petersen,† and Kung K. Wang*

Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506-6045

*kung.wang@mail.w*V*u.edu*

Received June 20, 2003

ABSTRACT

1,3-Prototropic rearrangement of the benzannulated enyne-isonitriles to the corresponding enallene-isonitriles followed by cycloaromatization generated the putative quinoline biradicals/zwitterions. A subsequent intramolecular radical−**radical coupling or electrophilic aromatic substitution then gave the formal** $[4 + 1]$ **cycloaddition adducts leading to 11***H***-indeno[1,2-***b***]quinoline and related compounds.**

Thermolysis of (*Z*)-3-hexene-1,5-diynes (enediynes) at elevated temperatures provides direct access to 1,4-didehydrobenzene biradicals. Specifically, the parent (*Z*)-3-hexene-1,5-diyne, which is stable at 25 °C, undergoes the Bergman cyclization reaction at 200 °C with a half-life of ca. 30 s (eq 1).¹

[†] To whom correspondence concerning the X-ray structures should be addressed. Phone: (304) 293-3435, ext 6423. Fax: (304) 293-4904. E-mail: jeffrey.petersen@mail.wvu.edu.

Replacing one of the alkynyl groups of enediynes with an allenic group causes the resulting (*Z*)-1,2,4-heptatrien-6-ynes (enyne-allenes) to be thermally much more labile. The parent (*Z*)-1,2,4-heptatrien-6-yne undergoes the Myers-Saito cyclization reaction to form the α , 3-didehydrotoluene biradical at 37 °C with a half-life of 24 h (eq 2).² A different mode of cyclization of enyne-allenes leading to fulvene biradicals (Schmittel cyclization) under mild thermal conditions has also been reported.³ Several heterocumulenes such as ketene,

^{10.1021/}ol035143f CCC: \$25.00 © 2003 American Chemical Society **Published on Web 08/12/2003**

^{(1) (}a) Jones, R. R.; Bergman, R. G. *J. Am. Chem. Soc.* **¹⁹⁷²**, *⁹⁴*, 660- 661. (b) Lockhart, T. P.; Comita, P. B.; Bergman, R. G. *J. Am. Chem. Soc.* **1981**, *103*, 4082-4090. For reviews, see: (c) Nicolaou, K. C.; Dai, W.-H. *Angew. Chem., Int. Ed. Engl.* **1991**, *30*, 1387-1416. (d) Wang, K. K. *Chem. Angew. Chem.*, *Int. Ed. Engl.* **¹⁹⁹¹**, *³⁰*, 1387-1416. (d) Wang, K. K. *Chem. Re*V*.* **¹⁹⁹⁶**, *⁹⁶*, 207-222. (e) Grissom, J. W.; Gunawardena, G. U.; Klingberg, D.; Huang. D. *Tetrahedron* **¹⁹⁹⁶**, *⁵²*, 6453-6518.

^{(2) (}a) Myers, A. G.; Kuo, E. Y.; Finney, N. S. *J. Am. Chem. Soc.* **1989**, *¹¹¹*, 8057-8059. (b) Myers, A. G.; Dragovich, P. S. *J. Am. Chem. Soc.* **¹⁹⁸⁹**, *¹¹¹*, 9130-9132. (c) Nagata, R.; Yamanaka, H.; Okazaki, E.; Saito, I. *Tetrahedron Lett.* **¹⁹⁸⁹**, *³⁰*, 4995-4998. (d) Nagata, R.; Yamanaka, H.; Murahashi, E.; Saito, I. *Tetrahedron Lett.* **¹⁹⁹⁰**, *³¹*, 2907-2910.

ketenimine, and carbodiimide have also been successfully employed to form enyne-ketenes (Moore cyclization),⁴ enyne-ketenimines,⁵ and enyne-carbodiimides⁶ for biradicalforming reactions.

The use of the isoelectronic nitrile group as a substitute for the alkynyl group was less successful. (*Z*)-*â*-Alkynylacrylonitriles apparently did not exhibit any propensity to undergo aza-Bergman cyclization in 1,4-cyclohexadiene at 150 °C for 2 h.7 (*Z*)-2,4,5-Hexatrienenitriles and related compounds also showed remarkable thermal stability at 150- 260 °C.8 Only in a benzannulated example where the allenic terminus was substituted with a sulfone group was the cycloaromatization reaction observed.9

The chemical reactivities of isonitrile in the benzannulated enyne-isonitrile system were exploited for tin- and sulfurmediated intramolecular free-radical cyclization as well as nucleophile-induced intramolecular cyclization, producing substituted indoles and quinolines.¹⁰ However, the feasibility of generating biradicals by thermolysis of enyne-isonitriles did not appear to have been explored. Theoretical studies suggest a relatively low barrier of activation enthalpy and favorable exothermicity for the aza-Bergman cyclization reaction of (*Z*)-but-1-en-3-yn-1-yl isonitrile to form 2,4 didehydropyridine compared to other types of Bergman cyclization reaction.¹¹ We envisioned that by placing the reactive isonitrile and allenic moieties on the adjacent carbon atoms of benzene, the resulting benzannulated enallene-

¹³³¹-1339. (4) (a) Karlsson, J. O.; Nguyen, N. V.; Foland, L. D.; Moore, H. W. *J. Am. Chem. Soc.* **¹⁹⁸⁵**, *¹⁰⁷*, 3392-3393. (b) Foland, L. D.; Karlsson, J. O.; Perri, S. T.; Schwabe, R.; Xu, S. L.; Patil, S.; Moore, H. W. *J. Am. Chem. Soc.* **¹⁹⁸⁹**, *¹¹¹*, 975-989. (c) Chow, K.; Nguyen, N. V.; Moore, H. W. *J. Org. Chem.* **¹⁹⁹⁰**, *⁵⁵*, 3876-3880. (d) Tarli, A.; Wang, K. K. *J. Org. Chem.* **¹⁹⁹⁷**, *⁶²*, 8841-8847. (e) For an excellent review, see: Moore, H. W.; Yerxa, B. R. *Chemtracts* **¹⁹⁹²**, 273-313.

(5) (a) Shi, C.; Wang, K. K. *J. Org. Chem.* **¹⁹⁹⁸**, *⁶³*, 3517-3520. (b) Schmittel, M.; Steffen, J.-P.; Angel, M. A. W.; Engels, B.; Lennartz, C.; Hanrath, M. *Angew. Chem.*, *Int. Ed.* **¹⁹⁹⁸**, *³⁷*, 1562-1564.

(6) (a) Shi, C.; Zhang, Q.; Wang, K. K. *J. Org. Chem.* **¹⁹⁹⁹**, *⁶⁴*, 925- 932. (b) Zhang, Q.; Shi, C.; Zhang, H.-R.; Wang, K. K. *J. Org. Chem.* **²⁰⁰⁰**, *⁶⁵*, 7977-7983. (c) Lu, X.; Petersen, J. L.; Wang, K. K. *J. Org. Chem.* **²⁰⁰²**, *⁶⁷*, 5412-5415. (d) Lu, X.; Petersen, J. L.; Wang, K. K. *J. Org. Chem.* **²⁰⁰²**, *⁶⁷*, 7797-7801. (e) Li, H.; Petersen, J. L.; Wang, K. K. *J. Org. Chem.* **²⁰⁰³**, *⁶⁸*, 5512-5518. (f) Schmittel, M.; Steffen, J.-P.; Engels, B.; Lennartz, C.; Hanrath, M. *Angew. Chem.*, *Int. Ed.* **¹⁹⁹⁸**, *³⁷*, 2371- 2373. (g) Schmittel, M.; Rodríguez, D.; Steffen, J.-P. *Angew. Chem., Int. Ed.* **²⁰⁰⁰**, *³⁹*, 2152-2155. (h) Alajarı´n, M.; Molina, P.; Vidal, A. *J. Nat. Prod.* **¹⁹⁹⁷**, *⁶⁰*, 747-748.

(7) (a) David, W. M.; Kerwin, S. M. *J. Am. Chem. Soc.* **¹⁹⁹⁷**, *¹¹⁹*, 1464- 1465. (b) Feng, L.; Kumar, D.; Kerwin, S. M. *J. Org. Chem.* **2003**, *68*,

²²³⁴-2242. (8) (a) Wang, K. K.; Wang, Z.; Sattsangi, P. D. *J. Org. Chem.* **1996**, *61*, ¹⁵¹⁶-1518. (b) Gillmann, T.; Heckhoff, S. *Tetrahedron Lett.* **¹⁹⁹⁶**, *³⁷*, ⁸³⁹-840.

(9) Wu, M.-J.; Lin, C.-F.; Chen, S.-H.; Lee, F.-C. *J. Chem. Soc.*, *Perkin Trans. 1* **¹⁹⁹⁹**, 2875-2876.

(10) (a) Rainier, J. D.; Kennedy, A. R.; Chase, E. *Tetrahedron Lett.* **1999**, *⁴⁰*, 6325-6327. (b) Rainier, J. D.; Kennedy, A. R. *J. Org. Chem.* **²⁰⁰⁰**, *⁶⁵*, 6213-6216. (c) Suginome, M.; Fukuda, T.; Ito, Y. *Org. Lett.* **¹⁹⁹⁹**, *¹*, ¹⁹⁷⁷-1979.

isonitrile system could provide excellent opportunities for generating biradicals under mild thermal conditions.

1,3-Prototropic rearrangement of enyne-isonitriles provided a simple synthetic route to enallene-isonitriles as outlined in Scheme 1. The 2-alkynylformanilide **1** was prepared by the palladium-catalyzed cross-coupling between 2-iodoformanilide and 3-phenyl-1-propyne. Dehydration of **1** with $POCI₃/i-Pr₂NH¹²$ then afforded in situ the enyne-isonitrile **2**, which exhibited IR signals at 2121 and 2202 cm-¹ attributable to the isonitrile and the alkynyl functionalities, respectively. The enyne-isonitrile **2** did not appear to undergo cycloaromatization even after it was kept at 0 °C for 6 h and then at room temperature for an additional 2 h. However, treatment of **2** with potassium *t*-butoxide at room temperature then afforded 11*H*-indeno[1,2-*b*]quinoline (**6**) in 52% yield from **1**.

Presumably, the reaction proceeded through an initial 1,3 prototropic rearrangement, induced by potassium *t*-butoxide, to form the desired enallene-isonitrile **3**. Potassium *t*-butoxide was selected because it was known to be inert to aryl isonitriles.¹³ It was also reported that the $1,3$ -prototropic rearrangement of 3-phenylpropyne and 1,3-diarylpropynes could be promoted by potassium hydroxide and basic alumina, respectively, at ambient temperature.14 The enalleneisonitrile **3**, generated in situ, then underwent cycloaromatization to give the biradical **4a**. It is worth noting that the biradical **4a** could also be regarded as the zwitterion **4b** with the aryl cationic center being stabilized by the lone pair electrons on the adjacent nitrogen atom. A subsequent intramolecular radical-radical coupling of **4a** or an intramo-

Dankner, D. *J. Org. Chem.* **¹⁹⁵⁷**, *²²*, 1424-1427.

^{(3) (}a) Schmittel, M.; Strittmatter, M.; Kiau, S. *Tetrahedron Lett.* **1995**, *³⁶*, 4975-4978. (b) Schmittel, M.; Strittmatter, M.; Vollmann, K.; Kiau, S. *Tetrahedron Lett.* **1996**, 37, 999-1002. (c) Schmittel, M.; Strittmatter, M.; Kiau, S. *Angew. Chem., Int. Ed. Engl.* **1996**, 35, 1843-1845. (d) M.; Kiau, S. *Angew. Chem.*, *Int. Ed. Engl.* **¹⁹⁹⁶**, *³⁵*, 1843-1845. (d) Schmittel, M.; Kiau, S.; Siebert, T.; Strittmatter, M. *Tetrahedron Lett.* **1996**, *³⁷*, 7691-7694. (e) Schmittel, M.; Keller, M.; Kiau, S.; Strittmatter, M. *Chem. Eur. J.* **¹⁹⁹⁷**, *³*, 807-816. (f) Schmittel, M.; Steffen, J.-P.; Maywald, M.; Engels, B.; Helten, H.; Musch, P. *J. Chem. Soc.*, *Perkin Trans. 2* **2001**,

⁽¹¹⁾ Debbert, S. L.; Cramer, C. J. *Int. J. Mass Spectrom.* **2000**, *201*, $1 - 15$.

⁽¹²⁾ Obrecht, R.; Herrmann, R.; Ugi, I. *Synthesis* **¹⁹⁸⁵**, 400-402. (13) Ugi, I.; Meyr, R. *Organic Syntheses*; Willy: New York, 1973;

Collect. Vol. V, pp 1060-1063. (14) (a) Landor, P. D. In *The Chemistry of the Allenes*; Landor, S. R., Ed.; Academic Press: London, 1982; Vol. 1, pp 44-47. (b) Jacobs, T. L.;

lecular electrophilic aromatic substitution of **4b** afforded the formal $[4 + 1]$ cycloaddition adduct **5**, which then produced, after a 1,3-prototropic rearrangement, the aromatized adduct **6**.

The palladium-catalyzed coupling reaction between 2-iodoformanilide and propargyl alcohol produced the alcohol **7** (96% yield), which was then converted to the mesylate **8** and the chloride **9** (Scheme 2). Interestingly, when the chloride **9** was subjected to a similar dehydration condition, the cycloaromatized dichloride **14**¹⁵ (41%) was produced directly along with a small amount of the trichloride **15** (6%). The use of diisopropylamine instead of triethylamine for dehydration under otherwise identical condition also furnished **14** (38%) and **15** (12%) in a single operation. Presumably, under the reaction conditions, the benzannulated enallene-isonitrile **12** was formed directly. Subsequent cycloaromatization led to the zwitterion **13**, which was then protonated and chlorinated to produce **14**. The reaction pathway that led to the formation of **15** is not clear at the present time. Similarly, by starting from **10**, the reaction sequence also led to **16**. A trace amount of a dichloride, attributable to **17**, was also detected by GC/MS.

Treatment of **8** with 4-(dimethylamino)pyridine produced the pyridinium mesylate 18 , which upon exposure to $POCl₃$ for dehydration afforded **21**¹⁵ (Scheme 3). It is worth noting that **21** has the core heteroaromatic ring system of the important camptothecin family of antitumor agents.¹⁶ Presumably, dehydration followed by the 1,3-prototropic rearrangement of the propargylic pyridinium salt as observed previously17 produced in situ **19**, which then underwent a sequence of reactions, including cycloaromatization, in-

tramolecular radical-radical coupling or electrophilic aromatic substitution, and 1,3-prototropic rearrangement as described for **6**.

Surprisingly, when **22** having a 4-methoxypyridinium substituent was treated with POCl₃, the 2-substituted indole **25** was produced in essentially quantitative yield (Scheme 4). One of the pathways that could be used to account for

the formation of **25** involves a rapid 1,3-prototropic rearrangement to produce the putative intermediate **23** before dehydration to form the isonitrile could occur. A subsequent intramolecular attack of the central carbon of the allenic moiety¹⁷ by the nitrogen of the formanilide or of the corresponding formimino phosphate could give **24** or a related phosphate derivative leading to **25**.

The change of the reaction pathway may be attributed to the lower ability of the 4-methoxyl group in **22** to donate electrons to the pyridinium ring than that of the 4-dimethylamino group in **18**, making the positive charge more

⁽¹⁵⁾ Structure was established by X-ray structure analysis.

^{(16) (}a) Wall, M. E.; Wani, M. C. In *The Alkaloids*; Cordell, G. A., Ed.; Academic Press: San Diego, 1998; Vol. 50, pp 509-536. (b) Curran, D. P.; Liu, H.; Josien, H.; Ko, S.-B. *Tetrahedron* **¹⁹⁹⁶**, *⁵²*, 11385-11404. (17) Katritzky, A. R.; Schwarz, O. A.; Rubio, O. *Hel*V*. Chim. Acta* **¹⁹⁸⁴**, *⁶⁷*, 939-946.

localized on the pyridinium nitrogen in **22**. ¹⁸ As a result, the propargylic hydrogens in **22** are more acidic and thus more prone to 1,3-prototropic rearrangement.

It was also observed that when **18** was treated only with neutral alumina or triethylamine, the 2-substituted indole **27** was produced in quantitative yield (Scheme 5). Presumably, the allene **26** was generated in situ as a reactive intermediate, which then underwent cyclization to give **27**. Similarly, treatment of **1** with potassium *t*-butoxide at room temperature for 2 h afforded 2-(phenylmethyl)indole (**31**) (Scheme 6).

While the allenic derivatives **26** and **29** are proposed as the intermediates for cyclization, it should be noted that the baseinduced formation of 2-substituted indoles from systems similar to **1** but without the possibility of a prior 1,3 prototropic rearrangement was also observed.19 The rate of cyclization of **28** was considerably slower than that of **1**, allowing the formation of **30** to be detected by 13C NMR

during the course of reaction. A signal at *δ* 206.9 attributable to the central carbon of the allenic moiety was observed.

It also needs to be mentioned that a nucleophile-triggered 6-endo cyclization of the benzannulated enyne-isonitriles **32** was proposed to account for the formation of the 2,3 disubstituted quinolines **35** (Scheme 7).10c While such a mechanism may also explain the formation of **14** and **16**, although the chloride is a very poor nucleophile and is unlikely to attack the isonitrile, it is not applicable to account for the formation of **6** and **21**.

In conclusion, a new synthetic pathway involving transformation of the benzannulated enyne-isonitriles to 11*H*indeno[1,2-*b*]quinoline and related compounds was established. The reaction presumably proceeded through an initial 1,3-protrotropic rearrangement to form the corresponding benzannulated enallene-isonitriles followed by a facile cycloaromatization reaction to generate the putative quinoline biradicals/zwitterions. A subsequent intramolecular radicalradical coupling or electrophilic aromatic substitution then furnished the formal $[4 + 1]$ cycloaddition adducts leading to 11*H*-indeno[1,2-*b*]quinoline and related compounds. While the putative quinoline biradicals/zwitterions were proposed as key reaction intermediates by drawing on the analogy with the Myers-Saito cyclization reaction of enyne-allenes, additional investigations would be needed to provide concrete evidence of their existence and to further explore the nature of their chemical reactivities.

Acknowledgment. The financial support provided by the Chemical Instrumentation Program of the National Science Foundation (CHE-9120098) for the acquisition of a Siemens P4 X-ray diffractometer is gratefully acknowledged.

Supporting Information Available: Experimental procedures, spectroscopic data, and ¹H and ¹³C NMR spectra for **¹**, **⁶**, **⁸**-**10**, **¹⁴**-**16**, **¹⁸**, **²¹**, **²²**, **²⁵**, **²⁷**, **²⁸**, and **³¹**; ORTEP drawings for **14** and **21**; and tables of crystallographic data for the X-ray diffraction analysis of **14**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL035143F

⁽¹⁸⁾ Rodima, T.; Kaljurand, I.; Pihl, A.; Mäemets, V.; Leito, I.; Koppel, I. A. *J. Org. Chem.* **²⁰⁰²**, *⁶⁷*, 1873-1881.

^{(19) (}a) Sakamoto, T.; Kondo, Y.; Yamanaka, H. *Heterocycles* **1986**, *²⁴*, 31-32. (b) Kondo, Y.; Kojima, S.; Sakamoto, T. *J. Org. Chem.* **¹⁹⁹⁷**, *⁶²*, 6507-6511. (c) Yasuhara, A.; Kanamori, Y.; Kaneko, M.; Numata, A.; Kondo, Y.; Sakamoto, T. *J. Chem. Soc.*, *Perkin Trans. 1* **¹⁹⁹⁹**, 529- 534.